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Answer any three from the following questions : 3×20

1.  (a) Examine with reason whether 0
1 1lim sin sinx x
x x

  
 

 exist or not. 2

(b) Give examples of a function which is 5

(i) Continues and bounded on  , attains its suprimum but not infimum.

(ii) Continues and bounded on  , attains its infimum but not its  suprimum.

(iii) Continunes and bounded on an interva, but attains neither its suprimum nor infimum.
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(c) Let [a, b] be a closed and bounded interval and  : ,f a b   be continuous on [a, b]. If

f(a) and f(b) are opposite sign then show that there exists at least a point c in the open

interval (a, b) such that f(c) = 0. 6

(d) Does Rolle’s theorem hold for    1 1 in 0, 2f x x    Justify.. 2

(e) Let    211 log , 0
3

0 , 0

x x x
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x

     
 

 Show that f is continuous at x = 0 but not derivable

there. 5

2. (a) Show that the Dirichlet’s function is everywhere discountnuous on  . 2

(b) Let [a, b] be a closed and bouded interval and a function   be continuous on [a,  b]. If

   f a f b  then f attains every value between f(a) and f(b) at least once in (a, b). Is the

converse ture ? Justify. 5

(c) Give and example of a function f defined on an interval I such  that 4

(i) f  has jump discontinuity at a point of I.

(ii) f  has removable discontinuity at a point of I.

(iii) f  has infinite discontinuity at a point of I.4.

(d) (i) Prove that for no real value of k, the equation 3 12 0x x k    has two real roots in

[–1,.1]. 2+3

(ii) Prove that there does not exist a function   such that    x f x    on [0, 2] where

   f x x x  .

(e) Prove that
3 3 5
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      for all 0x  . 4



3. (a) Prove that there exists 0,
2

x   
 

 such that cosx x . 2

(b) Let D   and a function :f D   be uniformly continuous on D. If  nx  be a Cauchy

sequence in D then show that   nf x  is a Cauchy sequence in  . If we drop the condition

‘‘uniformity’’, then is the above reseult hold ? Justify. 5

(c) If f(x) be differentiable at x a  show that 2
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
.

(d) (i) State Rolle’s theorem. Is the set of conditions of Rolle’s theorem a necessary condition ?

Justify.

(ii) If a function f is continuous at a point x = 0, prove t hat xf(x) is derivable at x = 0. 5

(e) State and prove Lagrange’s mean value theorem. Give its geometrical signifincance. 6

4. (a)  : 0,1f   is continuous on [0,1] and f  assumes only rational values. If 1 1
2 2

f    
 

,

prove that   1
2

f x   for all  0,1x . 2

(b) (i) Give an examples to show that a function which is continuous on an open bouded

interval may not be uniformly continuous there. 2+3

(ii) Let f be continuous on [a, b] and f(x) = 0 when x is rational. Show that f(x) = 0 for

every  ,x a b .

(c) Find  0f   [if exist] for the function  
33 2 , 0
2

33 2 , 0
2

x x
f x

x x

     
   


2



(d) Prove that between any two real roots of sin 1xe x  , there exist at least one real root of

cos 1 0xe x   . 2

(e) Expand sin x, x , in powers of x by Tailor’s series expansion. 3

(f) Find the minimum value (if exist) of the function defined by    , 0xf x x x  3

(g) Show that the greatest value of  , 0, 0m nx y x y   and x y k   (k = constant) is

 

n n m n

n
m n k

m n




. 3

5. (a) Prove that between any two real roots of sin 1xe x   there exist at least one real root of

cos 1 0xe x   . 4

(b) A function f is thrice differentiable on  ,a b  and     0f a f b   and also

    0f a f b   . Prove that the second derivative of f vanishes at c, where

a < c < b. 4

(c) Define discrete and pseudo metric space. 2

(d) On the real line  , show that a singleton set is not an open set. 2

(e) Let X be the set of all sequences of real numbers containing only a finite number of non-zero

element. Let :d X X X    be defined by        
1

2 2
1

,n n r rr
d x y x y


  . 6

(f) Give an example to show that the continuous image of an open bounded interval may not be

an open bouded interval. 2

6. (a) In the mean value theorem       , 0 1f x h f x hf x h       , prove that

0
1lim
2h     if   sin .f x x 4



(b) Show that any discrete metric space is a complete metric space. 2

(c) Show that in any metric space, a finite set has no limit point. 2

(d) Show by example that in any metric space, the Cantor intersection theorem  may not hold

good if any of the following conditions is not satisfied : 8

(i)  nF  is a sequence of closed sets.

(ii)   0nF   as n  where  A denotes the diameter of the set A.

(e) We know in a metric space  ,X d , ‘‘the union of a finite number of closed sets is closed’’.

In this result if we drop the finiteness, then is the result hold good ? Justify. 4

_____________


